Effectivity of Bromocriptine Administration Towards Prolactin Positive Breast Cancer Receiving Anthracycline-Based Chemotherapy: A Literature Review

Muhammad Yadi Permana, Sarwanti Sarwanti, Siti Fauziah


Breast cancer is among the deadliest gynecology cancers in the world. However, the management of advanced-stage breast cancer is often harder as a result of chemoresistance. This review aimed to discover the effect of bromocriptine on prolactin-positive breast cancer patients who received anthracycline-based chemotherapy. It is known that anthracycline works by inhibiting topoisomerase IIα (TOP2A), forming free radicals, binding DNA, and altering cell homeostasis, hence stopping the cell cycle and inducing cell death. However, reduction of TOP2A expression and increased glutathione s-transferase (GST) and ATP-binding cassette (ATP) membrane activity increase anthracycline efflux from the cell membrane, hence reducing its effectivity. Prolactin is one of the most common chemoresistance agents whose complex with its receptor will induce JAK/STAT pathway to increase GST. The regulation of Bcl-2 and ERK was also determined by prolactin. Bromocriptine is an agonist of the D2 dopamine receptor that inhibits adenyl cyclase and a D1 dopamine weak antagonist. Bromocriptine could reduce prolactin serum and receptors in various cases. Some studies have found that bromocriptine could improve the effectiveness of chemotherapy regimens, including cancer-related hyperprolactinemia, breast cancer that underwent cisplatin, and taxanes. Therefore, bromocriptine offers potential as it could improve outcomes and reduce resistance in prolactin-positive breast cancer patients who are administered anthracycline-based neoadjuvant chemotherapy.


breast cancer; bromocriptine; chemotherapy; prolactin; receptor


Globocan Fact Sheet: Breast. World Health Organization, The International Agency for Research on Cancer (IARC); 2018.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

Bulan Peduli Kanker Payudara. Pusat Data dan Informasi (Pusdatin) Kementerian Kesehatan Republik Indonesia; 2016.

Killelea BK, Yang VQ, Mougalian S, et al. Neoadjuvant chemotherapy for breast cancer increases the rate of breast conservation: results from the National Cancer Database. J Am Coll Surg. 2015;220(6):1063–9.

Official Statement: Performance and practice guidelines for the use of neoadjuvant systemic therapy in the management of breast cancer. The American Society of Breast Surgeons; 2018.

Selli C, Sims AH. Neoadjuvant therapy for breast cancer as a model for translational research. Breast Cancer (Auckl). 2019;13:1178223419829072.

Wellstein A, Giaccone G, Atkins MS. Cytotoxic drugs. In: Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 13th ed. New York: McGraw-Hill; 2018.

Chu E. Cancer chemotherapy. In: Basic and clinical pharmacology. 15th ed. New York: McGraw-Hill; 2018.

Nakajima N, Oguchi M, Kumai Y, et al. Clinical outcomes and prognostic factors in patients with stage II-III breast cancer treated with neoadjuvant chemotherapy followed by surgery and postmastectomy radiation therapy in the modern treatment era. Advances in Radiation Oncology. 2018;3(3):271–9.

Purnawaty A. Hubungan subtipe intrinsik dengan respon kemoterapi neoadjuvan berbasis antrasiklin pada kanker payudara stadium lanjut lokal. [Makassar]: Universitas Hassanudin;

Chien AJ, Moasser MM. Cellular mechanisms of resistance to anthracyclines and taxanes in cancer: intrinsic and acquired. Semin Oncol. 2008;35(2 Suppl 2):S1–14; quiz S39.

Edwardson D, Chewchuk S, Parissenti AM. Resistance to anthracyclines and taxanes in breast cancer. In: Ahmad A, editor. Breast cancer metastasis and drug resistance [Internet]. New York, NY: Springer New York; 2013 [cited 2023 Apr 17]. p. 227–47. Available from: https://link.springer.com/10.1007/978-1-4614-5647-6_13

LaPensee EW, Ben-Jonathan N. Novel roles of prolactin and estrogens in breast cancer: resistance to chemotherapy. Endocr Relat Cancer. 2010;17(2):R91-107.

Clevenger CV, Furth PA, Hankinson SE, Schuler LA. The role of prolactin in mammary carcinoma. Endocr Rev. 2003;24(1):1–27.

Pan ST, Li ZL, He ZX, Qiu JX, Zhou SF. Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmacol Physiol. 2016;43(8):723–37.

Permana M. Hubungan ekspresi prolaktin reseptor dengan respon kemoterapi neoadjuvan berbasis antrasiklin pada kanker payudara stadium lanjut lokal Jakarta. Universitas Indonesia; 2012.

Tripriadi E. Hubungan antara kadar serum medium chain trigliceride, omega-3, omega-6 dengan prolactin serum dan ekspresi prolaktin reseptor jaringan pada kanker payudara. Universitas Indonesia; 2017.

Katzung BG, editor. Basic & clinical pharmacology. Fourteenth edition. New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto: McGraw-Hill Education; 2018. p. 1250. (A Lange medical book).

Brunton LL, Knollmann BC, Hilal-Dandan R, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. Thirteenth edition. New York: McGraw Hill Medical; 2018. p. 1419.

Lissoni P, Mandalà M, Giani L, et al. Efficacy of bromocriptine in the treatment of metastatic breast cancer- and prostate cancer-related hyperprolactinemia. Neuro Endocrinol Lett. 2000;21(5):405–8.

Seo EJ, Sugimoto Y, Greten HJ, Efferth T. Repurposing of bromocriptine for cancer therapy. Front Pharmacol. 2018;9:1030.

Bayraktar S, Arun BK. Epidemiology, risk factors, and prevention. In: Aydiner A, İğci A, Soran A, editors. Breast disease [Internet]. Cham: Springer International Publishing; 2016 [cited 2023 Apr 17]. p. 57–87. Available from: https://link.springer.com/10.1007/978-3-319-22843-3_4

Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. BCTT. 2019;11:151–64.

Eliyatkın N, Yalçın E, Zengel B, Aktaş S, Vardar E. Molecular classification of breast carcinoma: from traditional, old-fashioned way to a new age, and a new way. J Breast Health. 2015;11(2):59–66.

Rustamadji P, Marisca S. Karakteristik histopatologik dan imunofenotipik kanker payudara di Rumah Sakit Cipto Mangunkusumo Jakarta, Indonesia. JKM [Internet]. 2018 Aug 4 [cited 2023 Apr 17];6(3). Available from: https://ojs.uph.edu/index.php/MED/article/view/1147

Widodo I, Dwianingsih EK, Triningsih E, Utoro T, Soeripto S. Clinicopathological features of Indonesian breast cancers with different molecular subtypes. Asian Pacific Journal of Cancer Prevention. 2014;15(15):6109–13.

Rahmawati Y, Setyawati Y, Widodo I, Ghozali A, Purnomosari D. Molecular subtypes of Indonesian breast carcinomas - lack of association with patient age and tumor size. Asian Pac J Cancer Prev. 2018;19(1):161–6.

Cardoso F, Paluch-Shimon S, Senkus E, et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol. 2020 Dec;31(12):1623–49.

Marinello J, Delcuratolo M, Capranico G. Anthracyclines as topoisomerase II poisons: From early studies to new perspectives. IJMS. 2018;19(11):3480.

Miyoshi Y, Kurosumi M, Kurebayashi J, et al. Predictive factors for anthracycline-based chemotherapy for human breast cancer. Breast Cancer. 2010;17(2):103–9.

Nogi H, Uchida K, Kamio M, et al. Triple-negative breast cancer exhibits a favorable response to neoadjuvant chemotherapy independent of the expression of topoisomerase IIα. Mol Clin Oncol. 2016r;4(3):383–9.

LaPensee EW. Mechanisms of chemoresistance in breast cancer and liposarcoma. [Cincinnati]: University of Cincinnati.

Burgess DJ, Doles J, Zender L, et al. Topoisomerase levels determine chemotherapy response in vitro and in vivo. Proc Natl Acad Sci U S A. 2008;105(26):9053–8.

Traverso N, Ricciarelli R, Nitti M, et al. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev. 2013;2013:972913.

Al-Harras MF, Houssen ME, Shaker ME, et al. Polymorphisms of glutathione S-transferase π 1 and toll-like receptors 2 and 9: Association with breast cancer susceptibility. Oncol Lett. 2016;11(3):2182–8.

Zelnak A. Overcoming Taxane and Anthracycline Resistance: Overcoming Taxane/Anthracycline Resistance. The Breast Journal. 2010;16(3):309–12.

Hembruff SL, Laberge ML, Villeneuve DJ, et al. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance. BMC Cancer. 2008;8(1):318.

Jamieson D, Cresti N, Bray J, et al. Two minor NQO1 and NQO2 alleles predict poor response of breast cancer patients to adjuvant doxorubicin and cyclophosphamide therapy. Pharmacogenet Genomics. 2011;21(12):808–19.

Jin Y, Penning TM. Aldo-keto reductases and bioactivation/detoxication. Annu Rev Pharmacol Toxicol. 2007;47:263–92.

Molina R, Oesterreich S, Zhou JL, et al. Glutathione transferase GST pi in breast tumors evaluated by three techniques. Dis Markers. 1993 Sep;11(2–3):71–82.

Doroshow JH, Akman S, Esworthy S, Chu FF, Burke T. Doxorubicin resistance conferred by selective enhancement of intracellular glutathione peroxidase or superoxide dismutase content in human MCF-7 breast cancer cells. Free Radic Res Commun. 1991;12-13 Pt 2:779–81.

Zhang Z, Lin G, Yan Y, et al. Transmembrane TNF-alpha promotes chemoresistance in breast cancer cells. Oncogene. 2018;37(25):3456–70.

Saleem M, Martin H, Coates P. Prolactin biology and laboratory measurement: An update on physiology and current analytical issues. Clin Biochem Rev. 2018;39(1):3–16.

Ben-Jonathan N, LaPensee CR, LaPensee EW. What can we learn from rodents about prolactin in humans? Endocrine Reviews. 2008;29(1):1–41.

Swaminathan G, Varghese B, Fuchs SY. Regulation of prolactin receptor levels and activity in breast cancer. J Mammary Gland Biol Neoplasia. 2008;13(1):81–91.

Mujagic Z, Srabovic N, Mujagic H. The role of prolactin in human breast cancer. Biochem Med. 2009;236–49.

Brooks CL. Molecular mechanisms of prolactin and its receptor. Endocr Rev. 2012;33(4):504–25.

Teilum K, Hoch JC, Goffin V, Kinet S, Martial JA, Kragelund BB. Solution structure of human prolactin. J Mol Biol. 2005;351(4):810–23.

Manavathi B, Kumar R. Steering estrogen signals from the plasma membrane to the nucleus: two sides of the coin. J Cell Physiol. 2006;207(3):594–604.

González L, Zambrano A, Lazaro-Trueba I, et al. Activation of the unliganded estrogen receptor by prolactin in breast cancer cells. Oncogene. 2009;28(10):1298–308.

Shemanko CS. Prolactin receptor in breast cancer: marker for metastatic risk. Journal of Molecular Endocrinology. 2016;57(4):R153–65.

Ferreira M, Mesquita M, Quaresma M, André S. Prolactin receptor expression in gynaecomastia and male breast carcinoma. Histopathology. 2008;53(1):56–61.

Carver KC, Arendt LM, Schuler LA. Complex prolactin crosstalk in breast cancer: New therapeutic implications. Molecular and Cellular Endocrinology. 2009;307(1–2):1–7.

Faupel-Badger JM, Duggan MA, Sherman ME, et al. Prolactin receptor expression and breast cancer: relationships with tumor characteristics among pre and postmenopausal women in a population-based case-control study from Poland. Horm Cancer. 2014;5(1):42–50.

Ullah A, Ben-Jonathan N. Induction of Cisplatin resistance by hormones in breast cancer. In 2017 [cited 2023 Apr 12]. Available from: https://www.semanticscholar.org/paper/Induction-of-Cisplatin-Resistance-by-Hormones-in-Ullah-Ben-Jonathan/40a8c82d3cdea0b17cf6191ea133e575e8a7fbec

LaPensee EW, Schwemberger SJ, LaPensee CR, Bahassi EM, Afton SE, Ben-Jonathan N. Prolactin confers resistance against cisplatin in breast cancer cells by activating glutathione-S-transferase. Carcinogenesis. 2009;30(8):1298–304.

Thomas SJ, Snowden JA, Zeidler MP, Danson SJ. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer. 2015;113(3):365–71.

Chen KHE, Walker AM. Prolactin inhibits a major tumor-suppressive function of wild type BRCA1. Cancer Lett. 2016;375(2):293–302.

Perks CM, Keith AJ, Goodhew KL, Savage PB, Winters ZE, Holly JMP. Prolactin acts as a potent survival factor for human breast cancer cell lines. Br J Cancer. 2004;91(2):305–11.

Kvernmo T, Härtter S, Burger E. A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther. 2006;28(8):1065–78.

Casanueva FF, Molitch ME, Schlechte JA, et al. Guidelines of the Pituitary Society for the diagnosis and management of prolactinomas. Clin Endocrinol. 2006;65(2):265–73.

Oladapo OT, Fawole B. Treatments for suppression of lactation. Cochrane Pregnancy and Childbirth Group, editor. Cochrane Database of Systematic Reviews [Internet]. 2012 Sep 12 [cited 2023 Apr 17]; Available from: https://doi.wiley.com/10.1002/14651858.CD005937.pub3

Ramamoorthy P, Sticca R, Wagner TE, Chen WY. In vitro studies of a prolactin antagonist, hPRL-G129R in human breast cancer cells. Int J Oncol [Internet]. 2001 Jan 1 [cited 2023 Apr 17]; Available from: http://www.spandidos-publications.com/10.3892/ijo.18.1.25

Lissoni P, Bucovec R, Malugani F, et al. A clinical study of taxotere versus taxotere plus the antiprolactinemic agent bromocriptine in metastatic breast cancer pretreated with anthracyclines. Anticancer Res. 2002;22(2B):1131–4.

Fentiman IS, Chaudary MA, Wang DY, Brame K, Camplhjohn RS, Millis RR. Perioperative bromocriptine adjuvant treatment for operable breast cancer. The Lancet. 1988;331(8586):609–10.

Bonneterre J, Mauriac L, Weber B, Roche H, Fargeot P, Tubiana-Hulin M, et al. Tamoxifen plus bromocriptine versus tamoxifen plus placebo in advanced breast cancer: results of a double blind multicentre clinical trial. Eur J Cancer Clin Oncol. 1988 Dec;24(12):1851–3.

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.